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Abstract

MHD Natural convection from a non-isothermal inclined surface with multiple suction/injection slots embedded in a thermally s
high-porosity medium has been studied. The non-linear coupled parabolic partial differential equations have been solved nume
using an implicit finite-difference scheme. The non-uniform wall temperature or the surface mass transfer in finite sections of th
strongly affect the heat transfer and the skin friction. When the surface in the slots is cooled, the direction of the heat transfer cha
the skin friction and the heat transfer increase due to suction but decrease due to injection. The heat transfer, in general, changes
with the stratification and magnetic parameters, in the slot near the trailing edge of the plate.
 2003 Éditions scientifiques et médicales Elsevier SAS. All rights reserved.
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1. Introduction

Natural convection phenomena arise in nature and
industries when a heated surface or substance is bro
into contact with a mass of fluid. The temperature chan
cause density variations leading to buoyancy forces. T
process of heat transfer is encountered in atmospheric
oceanic circulations, in the handling of spent nuclear rea
fuel assembles, in the design of solar energy collector
the process of frost formation involving low-temperatu
surfaces, etc. Natural convection from a vertical surf
in a constant-density medium has been widely stud
Gebhart et al. [1] have presented an overview of the nat
convection flows. In many free convection flows which oc
in nature and industry, the density of the medium is of
stably stratified with lighter fluid overlying denser fluid. Th
fluid is stably stratified with temperature increasing w
height except in the case of water between zero and 4◦C.
Thermal stratification is important in lakes, rivers and
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sea and in condensers of power plants and various indu
units. The natural convection flow over a heated vert
surface with uniform temperature immersed in an amb
fluid whose temperature increases linearly with height
first studied by Eichhorn [2] who solved the governi
partial differential equations by using a series solut
method, wherein only three terms in the series expan
were used. Fujii et al. [3] considered the non-linear ther
stratification and found that four terms are required
the series expansion method. Yang et al. [4] showed
the similarity solution exists for the physically unrealis
situation where the temperature of the fluid decreases
height. However, a similarity solution does exist when
wall and the ambient temperature increase with hei
Jaluria and Gebhart [5] have obtained similarity solution
the constant heat flux case when the temperature of bot
surface and the ambient fluid increase with height. Furt
Chen and Eichhorn [6,7] and, Venkatachala and Nath
have investigated the same problem by using a local n
similarity method and an implicit finite-difference schem
respectively. On the other hand, Semenov [9], Kulkarn
al. [10] and, Henkes and Hoogendoorn [11] have obtai
similarity solutions. The similarity solutions have one ma
sevier SAS. All rights reserved.
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Nomenclature

A dimensionless constant
B magnetic field
C∗ inertia coefficient
Cf skin friction co-efficient
Cp specific heat at constant pressure . . . kJ·kg−1·K
E electric field
Ec Eckert number
F,G dimensionless axial velocities . . . . . . . . . . m·s−1

Gr Grashof number
K∗ permeability of the porous medium
Ke effective thermal conductivity
k thermal conductivity . . . . . . . . . . . . . . W·m−1·K
L characteristic length . . . . . . . . . . . . . . . . . . . . . . m
M magnetic parameter
Nu Nusselt number
p pressure . . . . . . . . . . . . . . . . . . . . . . . . . Pa, N·m−2

Pr Prandtl number
Rex Reynolds number, based onx
Rem magnetic Reynolds number
S thermal stratification parameter
T temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K

u,v velocity components . . . . . . . . . . . . . . . . . . m·s−1

U∗ hypothetical velocity . . . . . . . . . . . . . . . . . . m·s−1

v characteristic velocity . . . . . . . . . . . . . . . . . m·s−1

Greek letters

αe effective thermal diffusivity . . . . . . . . . . . m2·s−1

η, ξ dimensionless coordinates
µ dynamic viscosity . . . . . . . . . . . . . . . kg·m−1·s−1

µ0 magnetic permeability
ν kinematic viscosity . . . . . . . . . . . . . . . . . . m2·s−1

ρ density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . kg·m−3

ψ Darcy number
σ electrical conductivity
Ω angle of inclination
Γ dimensional inertia coefficient

Subscripts

i initial conditions
w condition at the wall
∞ conditions at infinity
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drawback. These are valid only if the surface tempera
is higher than the ambient temperature at all heights
the wall. Angirasa and Srinivasan [12] have investiga
the natural convection over a vertical surface embed
in a thermally stratified medium due to the combin
effects of the buoyancy forces caused by the heat and
diffusion and obtained the solution of the boundary la
equations by using an explicit finite-difference method
was shown that the boundary layer approximations br
down in the case of opposing buoyant mechanism and
levels of ambient thermal stratification. To overcome th
difficulties, Angirasa and Srinivasan [13] have subseque
solved the Navier–Stokes equations along with the en
equation by employing the alternating direction impli
(ADI) method.

Natural convection flow over a vertical surface embed
in porous media also occurs in several engineering prob
such as those encountered in the design of pebble-be
clear reactors, catalytic reactors, and compact heat exch
ers, in geothermal energy conversion, in the use of fibr
materials, in the thermal insulation of buildings, in the h
transfer from storage of agricultural products which gene
heat as a result of metabolism, in petroleum reservoirs, in
clear wastes, etc. Excellent reviews of the natural convec
flows in porous media have been presented by Combar
and Bories [14], Catton [15], Bejan [16,17], and Tien a
Vafai [18]. The natural convection flow over a vertical hea
surface in a porous medium has been studied by Bejan
Khair [19], Nakayama and Koyama [20], and Kaviany a
Mittal [21]. The non-Darcy effects on the natural convect
boundary layer flow on an isothermal vertical flat plate e
s

-
-

s

bedded in a high-porosity medium was considered by C
et al. [22]. The effect of the ambient thermal stratificat
on the problem studied by Chen et al. [22] was investiga
by Singh and Tiwari [23], and Chen and Lin [24]. Chamk
[25] has extended the analysis of Chen and Lin [24] to
clude the effects of the magnetic field. Some more re
studies on this topic were carried out by Minto et al. [2
Yin [27], and Rees and Pop [28].

The mass transfer in a finite section of the surf
is of interest in many engineering problems. The s
suction/injection strongly influences the boundary la
development on the surface of the body and can d
separation. Also, the heat transfer and surface skin fric
can be controlled by wall cooling/heating of the wall in
slot. Uniform wall temperature or mass transfer in a s
introduces finite discontinuity at the leading and the trail
edge of the slot which causes considerable difficulties
the numerical computation. These discontinuities can
avoided by choosing a non-uniform mass transfer or w
temperature distribution in the slot.

The aim of this analysis is to investigate the effe
of heating/cooling of certain sections of the surface or
suction/injection slots, on the natural convection flow o
an inclined surface embedded in a stably thermally strat
high-porosity medium. The non-Darcian effects as wel
the viscous and Ohmic dissipation terms are included in
analysis. The magnetic field is applied normal to the sur
of the plate which is electrically insulated. The non-line
coupled parabolic partial differential equations govern
the flow have been solved numerically by using an impl
finite-difference scheme similar to that of Blottner [29]. T
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results have been compared with those of Eichhorn [2], C
and Eichhorn [6], Venkatachala and Nath [8], Chen and
[24] and Chamkha [25].

2. Problem formulation

We consider the steady laminar natural convection fl
of an incompressible viscous electrically conducting fl
on a heated inclined finite plate maintained at a tempera
Tw(x) in the interval[xi, xj ] and at a temperatureT1 in the
remaining portion of the plate. The surface mass tran
is applied only in the interval[xi, xj ]. The plate is placed
in a stably thermally stratified high-porosity medium. T
temperature of the ambient medium isT∞(x), which is
assumed to increase linearly with height. Fig. 1 sho
the physical model and the coordinate system. Using
Bousinesq approximation, all fluid properties are assume
be constant except for the density changes which give ris
the buoyancy forces in the momentum equation. The visc
and Ohmic dissipation terms have been included in
analysis. The magnetic fieldB is applied in they-direction,

Fig. 1. Physical model and coordinate system.
normal to the surface which is electrically non-conducti
It is assumed that the magnetic Reynolds numberRem =
µ0σνL 	 1, whereµ0 andσ are, respectively, the magnet
permeability and electrical conductivity, andv and L are
the characteristic velocity and length, respectively. Un
these conditions, it is possible to neglect the indu
magnetic field as compared to the applied magnetic fi
Since there is no applied or polarized voltage imposed
the flow field, the electric fieldE = 0. Hence only the
applied magnetic field contributes to the Lorentz for
which acts inx-direction along the plate. Since the pla
is inclined, both the streamwise pressure gradient term
the buoyancy force terms exist, but they have differ
magnitudes depending on the inclination angle (Ω/2), of
the surface from the vertical. The buoyancy streamw
pressure gradient term can be neglected in comparison t
buoyancy force term if the condition tan (Ω/2)	 Re1/2

x /η∞
is satisfied [30]; whereη∞ is the edge of the boundar
layer,Rex = U∗x/ν is the local Reynolds number,U∗ is the
hypothetical velocity andν is the kinematic viscosity. Fo
laminar boundary layer flows,Rex lies between 103 to 105

andη∞ = 10. ForRex = 103,Ω/2< 45◦ and forRex = 105,
Ω/2< 80◦. Under the above assumptions, the equation
continuity, momentum and energy under the boundary la
approximations governing the natural convection flow on
inclined plate can be expressed as:

ux + vy = 0 (1)

ε−2(uux + vuy)

= ε−1νuyy + gβ
(
T − T∞(x)

)
cos(Ω/2)− σB2u/ρ

− ν
(
u/K∗) −C∗(u2/ρ

)
(2)

uTx + vTy = αeTyy + (ν/Cp)u
2
y + σB2u2/(ρCp) (3)

The boundary conditions are the no-slip conditions at
surface and ambient conditions far away from the surf
and these can be expressed as;

u(x,0)= 0, v(x,0) = vw(x), T (x,0)= Tw(x)

for xi � x � xj

v(x,0) = 0, T (x,0)= T1 for x < xi, x > xj

u(x,∞)= 0, T (x,∞)= T∞(x)= T0 + ax cos(Ω/2)

T1 > T0, a > 0

u(0, y)= 0, T (0, y) = T0 y > 0

(4)

Herex andy are the distances along and perpendicu
to the surface, respectively;u and v are the velocity
components along thex andy directions, respectively;T is
the temperature;ε is the porosity of the medium;g is the
acceleration due to gravity;β is the volumetric coefficient o
thermal expansion;T∞(x) = T0 + ax, a > 0, is the ambien
fluid temperature andT0 is the ambient fluid temperatur
at x = 0; a is the slope of the ambient temperature
a > 0 for a stably stratified fluid;K∗ is the permeability of
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the medium;C∗ is the inertia coefficient;αe (= Ke/ρCp)
is the effective thermal diffusivity of the porous mediu
ρ is the density of the fluid;Cp is the specific heat o
the fluid at a constant pressure;Ke is the effective therma
conductivity of the fluid;T1 (T1 > T0) is a constant wal
temperature except in the slot;Ω/2 is the inclination of the
plate from the vertical;B is the magnetic field; the subscrip
x andy denote partial derivatives with respect tox andy,
respectively; and the subscriptsw and∞ denote conditions
at the wall and in the ambient fluid, respectively.

It is convenient to reduce Eqs. (1)–(3) in a dimension
form by using the following transformations;

ξ = x/L, η = Gr1/4y/L

F = Gr−1/2uL/ν, G = Gr−1/4vL/ν

θ = (
T − T∞(x)

)
/(T1 − T0)

Gr = gβ(T1 − T0)L
3/ν2

Pr = ν/αe

M2 = σB2L2/
(
µGr1/2), ψ = K∗Gr1/2/L2

Γ = C∗L
Ec = ν2Gr/

[
CpL

2(T1 − T0)
]

S = aLcos(Ω/2)/(T1 − T0)

(5)

Consequently, Eqs. (1)–(3) reduce to;

∂F/∂ξ + ∂G/∂η = 0 (6)

ε−2(F∂F/∂ξ +G∂F/∂η)

= ε−1∂2F/∂η2 + θ cos(Ω/2)− (
ψ−1 +M2)F − Γ F 2

(7)

F∂θ/∂ξ +G∂θ/∂η

= Pr−1∂2θ/∂η2 − SF + Ec
[
(∂F/∂η)2 +M2F 2] (8)

The boundary conditions (4) can be re-written as;

F(ξ,0) = 0, G(ξ,0) = P1(ξ)

θ(ξ,0) = P2(ξ) − Sξ for ξi � ξ � ξj

G(ξ,0) = 0, θ(ξ,0) = 1− Sξ for ξ < ξi, ξ > ξj

F (ξ,∞) = θ(ξ,∞) = 0

(9)

where

P1(ξ) = ε2 sin
[
Aπ2(ξ − ξi)(ξj − ξ)

]

P2(ξ) = 1+ ε1 sin
[
Aπ2(ξ − ξi)(ξj − ξ)

] (10)

Here ξ and η are the dimensionless distances along
perpendicular to the plate, respectively;F and G are
the dimensionless velocities alongξ and η directions,
respectively;Gr is the Grashof number with respect toL;
θ is the dimensionless temperature;M is the magnetic
parameter;S is the ambient thermal stratification paramet
Pr is the Prandtl number;Ec is the dimensionless dissipatio
parameter;ψ is the Darcy number;Γ is the dimensionles
inertial parameter;µ is the coefficient of viscosity; andA,
ε1 andε2 are constants.ε1 > or < 0 according to whethe
the wall is being heated or cooled in the slot andε2 >
or< 0 according to whether it is injection or suction in th
region. Also,ε1 = 0 when the entire wall is at a consta
temperatureT1. Similarly, ε2 = 0 when there is no suctio
or injection at the wall.

It may be remarked that Eqs. (6)–(9) forε1 = ε2 = 0
reduce to those of Chamkha [25]. ForM = ε = ε1 = ε2 =
Ec = ψ−1 = Γ = Ω = 0, Eqs. (6)–(9) reduce to those
Eichhorn [2], Chen and Eichhorn [6], and Venkatachala
Nath [8]. Further forM = ε1 = ε2 = Ec = Ω = 0, Eqs. (6)–
(9) reduce to those of Chen and Lin [24].

The quantities of physical interest are the local s
friction and heat transfer coefficients and these can
expressed as;

Cfx = µ(∂u/∂y)y=0/ρ
(
νGr1/2L−1)2

= Gr−1/4∂F (ξ,0)/∂η

Nux = −L(∂T/∂y)y=0/(Tw − T∞)

= −Gr1/4ξ
[
∂θ(ξ,0)/∂η

](
P2(ξ)− Sξ

)−1

whenξi � ξ � ξj

Nux = −Gr1/4ξ
[
∂θ(ξ,0)/∂η

]
(1− Sξ)−1

whenξ < ξi, ξ > ξj (11)

whereCfx is the local skin friction coefficient andNux is
the local Nusselt number.

3. Method of solution

The partial differential equations (6)–(8) under the bou
ary conditions (9) have been solved by using an implici
erative tridiagonal finite difference scheme similar to tha
Blottner [29]. All the first order derivatives with respect toξ
are replaced by two-point backward difference formulae
the form;

∂R/∂ξ = (Ri,j −Ri−1,j )/.ξ (12)

whereR is any dependent variable,rG or θ , andi andj are
the node locations along theξ andη directions, respectively
The second order partial differential equations (7) and
are discretized by using the three-point central differe
formulae while the first-order differential equations a
discretized by employing the trapezoidal rule. At each l
of constantξ , a system of algebraic equations are sol
iteratively by using the well known Thomas algorithm (s
Blottner [29]). The same process is repeated for the
ξ value and the equations are solved line by line until
desiredξ value is reached. A convergence criterion based
the relative difference between the current and the prev
iterations is used. When this difference reaches 10−5, the
solution is assumed to have converged and the itera
process is terminated.

We have examined the effects of grid sizes.η and.ξ ,
and the edge of the boundary layerη∞, on the solution. The
results presented here are independent of grid size andη∞,
at least up to the 4th decimal place.
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4. Results and discussion

Eqs. (6)–(8) under the boundary conditions (9) have b
solved numerically by using an implicit finite-differenc
scheme as described earlier. We have compared the va
the heat transfer parameter−θ ′(ξ,0) for ε = ψ−1 = Γ = 0
(constant density medium),Ω = 0 (vertical plate),M = 0
(without magnetic field),ε1 = 0 (isothermal surface an
ε2 = 0 (without mass transfer) with those of Eichhorn [
Chen and Eichhorn [6] and Venkatachala and Nath [8], w
used the series solution method, the local non-simila
method and the finite-difference method, respectively
their analyses. For largePr(= 6), the local non-similarity
results of Chen and Eichhorn [6] are in very good agreem
with the present results. However, for small values ofPr
(Pr = 0.7) and forξ � 0.6, the local non-similarity metho
slightly over-estimates the heat transfer. On the other h
the series solution results of Eichhorn [2] are in go
agreement with those of the finite-difference method
ξ � 0.6, but beyond this value they differ significantly. T
series solution method forξ � 0.6 under-estimates the he
transfer results.

It may be noted that for the computations, we have ta
two slots located in the intervals [0.1, 0.3] and [0.5, 0.7] a
the constant (A) in the wall temperature and mass tran
distributions to be equal to 1. The suction/injection is app
only in these two intervals. Also the wall is heated or coo
in these intervals only.

Figs. 2 and 3 present the effects of non-uniform wall te
perature in two slots (ε1 �= 0) and the thermal stratificatio
parameterS on the local skin friction coefficient (Gr1/4Cfx )
and the local Nusselt number (Gr−1/4Nux ) in the absence o
suction ′ injection (ε2 = 0) whenEc = M = 1, Pr = 5.4,

Fig. 2. Skin friction coefficient,Gr1/4Cfx , for non-uniform wall tempera-
ture in the slots for several values of the thermal stratification parameteS.
f

,

ε = 0.4, Γ = 10, ψ = 1, Ω = π/3. The corresponding re
sults for the constant temperature over the entire sur
(ε1 = 0) are shown in Figs. 4 and 5. It is evident fro
these figures that the non-uniform wall temperature indu
a complicated behaviour in the variation of the skin fricti
and the heat transfer with the streamwise distanceξ . Since
the change in the wall temperature takes place in two s
only, the effect is most pronounced within and in the vic
ity of these slots (especially in and near the second slot).
slot heating (ε1 > 0), the skin friction coefficient (Gr1/4Cfx )
is higher than that of the slot cooling (ε1 < 0) for all val-
ues of the stratification parameterS. On the other hand, th
skin friction decreases with increasingS for both heating
and cooling of the wall in the slot. The reason for the ab
trend is that for a fixedS the heating of a section of the su
face (ε1 > 0) makes the liquid near the surface less visco
which offers less resistance to the liquid motion and the fl
is accelerated. Consequently, the skin friction coefficien
creases. The effect of slot cooling (ε1 < 0) is opposite to
that of slot heating (ε1 > 0). Also the effect of the stratifi
cation parameterS becomes more pronounced with incre
ing streamwise distanceξ , because the wall temperature d
creases withξ . Hence the temperature difference betwe
the wall and fluid near the wall increases. The local N
selt number (Gr−1/4Nux ) shows a more complicated tren
in the vicinity of the second slot. The effect of cooling
the heat transfer is more pronounced than that of hea
because due to the cooling of the wall, the temperature
ference near the surface increases, which causes con
able changes in the heat transfer near the second slot.
the direction of the heat transfer changes in and near the
ond slot. Since the wall temperatureT1 is higher than that o
the fluid near the wall, the heat is transferred from the w

Fig. 3. Nusselt number,Gr−1/4,Nux , for non-uniform wall temperature in
the slots for several values of the thermal stratification parameter,S.
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Fig. 4. Skin friction coefficient,Gr1/4Cfx , for uniform wall temperature
on the entire surface for several values of the thermal stratifica
parameter,S.

Fig. 5. Nusselt number,Gr−1/4Nux , for uniform wall temperature on th
entire surface for several values of the thermal stratification parameterS.

to the fluid. When the wall is cooled, the temperature of
surrounding fluid becomes more than that of the wall. He
the heat is transferred from the fluid to the wall. In the
gions 0.3 � ξ � 0.6 and 0.7< ξ � 1.0, the Nusselt numbe
for wall cooling (ε1 < 0) is more than that of the wall hea
ing (ε1 > 0), because temperature difference near the
increases with cooling. Hence the heat transfer increase
to wall cooling.
e

Fig. 6. Skin friction coefficient,Gr1/4Cfx , for non-uniform wall tempera-
ture in the slots for several values of the magnetic parameter,M .

Fig. 7. Nusselt number,Gr−1/4Nux , for non-uniform wall temperature in
the slots for several values of the magnetic parameter,M .

In Figs. 6 and 7, the effects of wall heating/cooling
the slots without mass transfer (ε2 = 0) on the skin friction
coefficient (Gr1/4Cfx ) and the Nusselt number (Gr−1/4Nux )
for various values of the magnetic parameterM, when
Ec = 1, Pr = 5.4, S = 0.5, ε = 0.4, Γ = 10, ψ = 1, Ω =
π/3 are shown. Since the effect is qualitatively similar
that of the previous figures, it is not discussed here.

The dimensionless velocity components in thex and
y directions,F(ξ, η) and G(ξ,η), and the dimensionles
temperatureθ(ξ, η), for the heating/cooling of the wa
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Fig. 8. Skin friction coefficient,Gr1/4Cfx , for non-uniform mass transfe
in the slots.

temperature in the slots for several values of the stratifica
parameterS whenEc = M = 1, Pr = 5.4, ε = −0.4, ε2 = 0,
Γ = 10, ψ = 1, Ω = π/3, ξ = 0.25 have been calculate
It is found that in general, the velocities and tempera
(F,G,θ ) for the wall cooling (ε1 < 0) are less than those o
wall heating (ε1 > 0). Since the wall cooling has a stabilizin
effect, the velocities and the temperature are reduce
wall cooling. Since the increase in the thermal stratificat
parameterS reduces the wall temperature and hence
thermal buoyancy forces, the velocities and the tempera
are reduced due to an increase in the stratification param

The effect of multiple slot suction/injection (ε2 �= 0) on
the local skin friction coefficient (Gr1/4Cfx ) and the local
Nusselt number (Gr−1/4Nux ) for Ec = M = 1, Pr = 5.4,
ε = 0.4, ε1 = 0, Γ = 10,ψ = 1.0,Ω = π/3 is displayed in
Figs. 8 and 9. Since the effect of suction (ε2 < 0) is to suck
away the warm fluid near the plate; thus it decreases
the momentum and thermal boundary layer thicknesses
skin friction and heat transfer coefficients increase du
suction. On the other hand, injection (ε2 > 0) increases the
momentum and thermal boundary layer thicknesses. H
both the skin friction and the heat transfer are reduced
injection, but it is not a mirror reflection of suction.

5. Conclusions

The results indicate that the non-uniform wall tempe
ture and surface mass transfer in certain sections of the
tical surface exert a strong influence on the local heat tr
fer and skin friction. When the wall temperature is redu
in the slots, there is a change in the direction of the h
transfer. The skin friction and the heat transfer increase
r.

-

Fig. 9. Nusselt number,Gr−1/4Nux , for non-uniform mass transfer in th
slots.

to suction, but reduce due to injection. The heat tran
changes very significantly in the region of the second s
The effects of surface suction and injection or the surf
heating and cooling in the slots, are not a mirror reflectio
each other. The thermal stratification and magnetic para
ters produce significant changes on the skin friction and
heat transfer.
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